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SunOS 5.0 Multithread Architecture

M.L. Powell, S.R. Kleiman, S. Barton, D. Shah, D. Stein, M. Weeks

Executive Summary
This paper describes a model for multiple threads of control within a single
process. As part of Solaris™ 2.0, SunOS™ 5.0 features a multithread architecture
for enabling enhanced performance in multiprocessor environments. Solaris 2.0
is comprised of SunOS 5.0, enhanced ONC™, OpenWindows™ V3, DeskSet™ V3,
and OPEN LOOK®. The main goals are to provide extremely lightweight threads
and to rationalize and extend the UNIX® Application Programming Interface for
a multithreaded environment. The threads are intended to be sufficiently
lightweight so that there can be thousands present and that synchronization and
context switching can be accomplished rapidly without entering the kernel.
These goals are achieved by providing lightweight user-level threads that are
multiplexed on top of kernel-supported threads of control. This architecture
allows the programmer to separate logical (program) concurrency from the
required real concurrency, which is relatively costly, and to control both within a
single programming model.

Introduction
The reasons for supporting multiple threads of control in SunOS fall into two
categories: those motivated by multiprocessor hardware and those motivated by
application concurrency. It is possible to exploit multiprocessors to varying
degrees depending on how much the uniprocessor software base is modified.
In the simplest case, only separate user processes can run on the additional
processors: the applications are unchanged. To allow a single application to use
multiple processors (e.g., array processing workload), the application must be
restructured.

The second category of reasons for multiple threads of control is application
concurrency. Many applications are best structured as several independent
computations. A database system may have many user interactions in progress
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while at the same time performing several file and network operations. A
window system can treat each widget as a separate entity. A network server may
indirectly need its own service (and therefore another thread of control) to
handle requests. In each case, although it is possible to write the software as one
thread of control moving from request to request, the code may be simplified by
writing each request as a separate sequence, and letting the language, the library,
and the operating system handle the interleaving of the different operations.

These examples are not intended to be exhaustive, but they indicate the
opportunities to exploit powerful hardware and build complex applications and
services with this technology. The examples show that the user model for
multiple threads of control must support a variety of applications and
environments. The architecture should, where possible, use current
programming paradigms and preserve software compatibility.

As is true of many system services today, the programmer’s view of the multiple
threads of control service is not always identical to what the kernel implements.
The software view is created by a combination of the kernel, runtime libraries,
and the compilation system. This approach increases the portability of
applications and systems, by hiding some details of the implementation, while
providing better performance, by allowing library code to do some work without
involving the kernel.

The remainder of this paper is divided into five sections. The first section gives
an overview of the architecture and introduces our terminology. The second
section discusses our design goals and principles. The third section gives
additional details of operation and interfaces and how the process model is
reinterpreted in the new environment. The fourth section gives some
performance data and operational experience. The last section compares this
architecture with others.

The terminology of multiprocessor and multithreaded computation is
unfortunately not universally agreed upon. Although the most common terms
have been chosen, and consistency attempted, the reader is warned that some
people use these words with other meanings. Examples of other models can be
found in the last section of this paper.
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Multithreading Architecture Overview
The multithreaded programming model has two levels. The most important
level is the thread interface, which defines most aspects of the programming
model. That is, programmers write programs using threads. The second level is
the lightweight process (LWP) which is defined by the services the operating
system must provide. After describing each level, we explain why both levels are
essential.

Threads

A traditional UNIX process has a single thread of control. A thread of control, or
more simply a thread, is a sequence of instructions being executed in a program.
A thread has a program counter (PC) and a stack to keep track of local variables
and return addresses. A multithreaded UNIX process is no longer a thread of
control in itself; instead, it is associated with one or more threads. Threads
execute independently. There is in general no way to predict how the
instructions of different threads are interleaved, though they have execution
priorities that can influence the relative speed of execution. In general, the
number or identities of threads that an application process chooses to apply to a
problem are invisible from outside the process. Threads can be viewed as
execution resources that may be applied to solving the problem at hand.

Threads share the process instructions and most of its data. A change in shared
data by one thread can be seen by the other threads in the process. Threads also
share most of the operating system state of a process. Each sees the same open
files. For example, if one thread opens a file, another thread can read it. Because
threads share so much of the process state, threads can affect each other in
sometimes surprising ways. Programming with threads requires more care and
discipline than ordinary programming because there is no system-enforced
protection between threads.

Each thread may make arbitrary system calls and interact with other processes in
the usual ways. Some operations affect all the threads in a process. For example,
if one thread calls exit() , all threads are destroyed. Other system services have
new interpretations; e.g., a floating-point overflow trap applies to a particular
thread, not to the whole program.

The architecture provides a variety of synchronization facilities to allow threads
to cooperate in accessing shared data. The synchronization facilities include
mutual exclusion (mutex) locks, condition variables and semaphores. For
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example, a thread that wants to update a variable might block waiting for a
mutual exclusion lock held by another thread that is already updating it. To
support different frequencies of interaction and different degrees of concurrency,
several synchronization mechanisms with different semantics are provided.

As shown in Figure 1, threads in different processes can synchronize with each
other via synchronization variables placed in shared memory, even though the
threads in different processes are generally invisible to each other.
Synchronization variables can also be placed in files and have lifetimes beyond
that of the creating process. For example, a file can be created that contains
database records. Each record can contain a mutual exclusion lock variable that
controls access to the associated record. A process can map the file and a thread
within it can obtain the lock associated with a particular record that is to be
modified. When the modification is complete, the thread can release the lock and
unmap the file. Once the lock has been acquired, if any thread within any
process mapping the file attempts to acquire the lock, that thread will block until
the lock is released.

Figure 1 Synchronization Variables

Lightweight Processes

Threads are an appropriate paradigm for most programs that wish to exploit
parallel hardware or express concurrent program structure. For those situations
that require more control over how the program is mapped onto parallel
hardware, and to optimize the costs of concurrent execution and
synchronization, a second interface is defined.

S
Process 1

Synchronization
variable

Thread

S
Process 2

S
S

Shared memory
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In the SunOS multithread architecture, a UNIX process consists mainly of an
address space and a set of lightweight processes (LWPs1) that share that address
space. Each LWP can be thought of as a virtual CPU which is available for
executing code or system calls. Each LWP is separately dispatched by the kernel,
may perform independent system calls, incur independent page faults, and may
run in parallel on a multiprocessor. All the LWPs in the system are scheduled by
the kernel onto the available CPU resources according to their scheduling class
and priority.

Threads are implemented using LWPs. Threads are actually represented by data
structures in the address space of a program. LWPs within a process execute
threads as shown in Figure 2. An LWP chooses a thread to run by locating the
thread state in process memory (a). After loading the registers and assuming the
identity of the thread, the LWP executes the thread’s instructions (b). If the
thread cannot continue, or if other threads should be run, the LWP saves the
state of the thread back in memory (c). The LWP can now select another thread
to run (d).

Figure 2 LWPs Running Threads

1. The LWPs in this document are fundamentally different than the LWP library in SunOS 4.0. Lack of
imagination and a desire to conform to generally accepted terminology lead us to use the same name.

(a) LWP chooses a thread
to execute

LWP

Thread state

(b) LWP executes a thread

(c) LWP saves state of thread

Current thread

(d) LWP chooses another
thread to execute
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When a thread needs to access a system service by performing a kernel call, by
taking a page fault, or to interact with threads in other processes, it does so using
the LWP that is executing it. The thread needing the system service remains
bound to the LWP executing it until the system call is completed. If a thread
needs to interact with other threads in the same process, it can do so without
involving the operating system. As Figure 2 shows, switching from one thread to
another occurs without the kernel knowing it. Much as the UNIX stdio  library
routines (such as fopen()  and fread() ), are implemented using the UNIX
system calls (open()  and read() ), the thread interface is implemented using
the LWP interface, and for many of the same reasons.

An LWP may also have some capabilities that are not exported directly to
threads, such as a special scheduling class. A programmer can take advantage of
these capabilities while still retaining use of all the thread interfaces and
capabilities (e.g., synchronization) by specifying that the thread is to remain
permanently bound to an LWP.

Threads are the primary interface for application parallelism. Few multithreaded
programs will use the LWP interface directly, but it is sometimes important to
know that it is there. Some languages define concurrency mechanisms that are
different from threads. An example is a Fortran compiler that provides loop level
parallelism. In such cases, the language library may implement its own notion of
concurrency using LWPs. Most programmers can program using the threads
interface and let the library take care of mapping threads onto the kernel
primitives. The decision of how many LWPs should be created to run the threads
can be left to the library, or may be specified by the programmer.

Why Have Both Threads and LWPs?

One might wonder why it is necessary to have two interfaces that are so similar.
The multithreaded architecture must meet a variety of different expectations.
Some programs have large amounts of logical parallelism, such as a window
system that provides each widget with one input handler and one output
handler. Other programs need to map their parallel computation onto the actual
number of processors available. In both cases, programs want to easily have
complete access to the system services.

Threads are implemented by the library and are not known to the kernel. Thus,
threads may be created, destroyed, blocked, activated, etc., without involving the
kernel. LWPs are implemented by the kernel. If a thread wants to read from a
file, the kernel needs to be able to switch to other processing when the LWP
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blocks in the file system code waiting for the I/O to finish. The kernel has to
preserve the state of the read operation and continue it when the I/O interrupt
arrives. However, if each thread were always known to the kernel, it would have
to allocate kernel data structures for each one and get involved in context-
switching threads even though most thread interactions involve threads in the
same process. In other words, kernel-supported parallelism (LWPs) is relatively
expensive compared to threads. Having all threads supported directly by the
kernel would cause applications such as the window system to be much less
efficient. Although the window system may be best expressed as a large number
of threads, only a few of the threads ever need to be active (i.e., require kernel
resources, other than virtual memory) at the same instant.

Sometimes having more threads than LWPs is a disadvantage. A parallel array
computation divides the rows of its arrays among different threads. If there is
one LWP per processor, but multiple threads per LWP, each processor would
spend overhead switching between threads. It would be better to know that
there is one thread per LWP, divide the rows among a smaller number of
threads, and reduce the number of thread switches. By specifying that each
thread is permanently bound to its own LWP, a programmer can write thread
code that is really LWP code, much like locking down pages turns virtual
memory into real memory.

A mixture of threads that are permanently bound to LWPs and unbound threads
is also appropriate for some applications. An example of this would be some
real-time applications that want some threads to have system-wide priority and
real-time scheduling, while other threads can attend to background
computations.

By defining both levels of interface in the architecture, a clear distinction is made
between what the programmer sees and what the kernel provides. Most
programmers program using threads and do not think about LWPs. When it is
appropriate to optimize the behavior of the program, the programmer has the
ability to tune the relationship between threads and LWPs. This allows
programmers to structure their application assuming extremely lightweight
threads while bringing the appropriate degree of kernel-supported concurrency
to bear on the computation. To some degree, a threads programmer can think of
LWPs used by the application as the degree of real concurrency that the
application requires.
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Summary

Figure 3 shows all of the pieces in one diagram. The assignment of threads to
LWPs is either controlled by the threads package or is specified by the
programmer. The kernel sees LWPs and may schedule these on the available
processors.

Figure 3 Multithread Architecture Examples

Process 1 is the traditional process with a single thread attached to a single LWP.
Process 2 has threads multiplexed on a single LWP as in typical coroutine
packages, such as SunOS 4.0 liblwp . Process 3 through 5 depict new
capabilities of the SunOS multithread architecture. Process 3 has several threads
multiplexed on a lesser number of LWPs. Process 4 has its threads permanently
bound to LWPs. Process 5 shows all the possibilities: a group of threads
multiplexed on a group of LWPs, while having threads bound to LWPs. In
addition, the process has asked the system to bind one of its LWPs to a CPU.
Note that the bound and unbound threads can still synchronize with each other
both within the same process and between processes in the usual way.

Design Goals
Having described the overall thread model and language used to describe the
model, the goals of the architecture can be examined. The following goals are
approximately in order of importance.

= LWP = CPU

User

Kernel

Hardware

proc 1 proc 2 proc 3 proc 4 proc 5
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• The architecture should describe structures and mechanisms that work among
threads in the same program, between different programs (processes), and
between processors (whether the processors are executing in the same or
different processes).

• The architecture should support threads that are as cheap as possible. Threads
within a program should not be forced to cross protection boundaries to
synchronize or context switch, nor should threads require excessive kernel
resources.

• The architecture must support both multiprocessor and uniprocessor
implementations.

• All current UNIX semantics should be provided in user programs and
libraries wherever possible. The degenerate case of a process being
constructed of an address space and one lightweight process must provide
complete UNIX semantics.

• Different lightweight processes should be able to do independent,
simultaneous system calls.

• The mechanisms defined in the system should be simple and fundamental.
For example, there should be a method of using threads that does not force
the threads library to use malloc() . This prevents interference with other
application or language runtime system memory allocators.

The following are not exactly goals, but are principles that were used to help
design the architecture.

• Per-thread state must be kept to a minimum. Each additional piece of state
above the minimum necessary must be justified so as not to add undue
“weight” to a thread.

• An address space with one thread (and therefore one lightweight process),
should behave like a standard UNIX process; the addition of a new thread
(and possibly a lightweight process), that does not interact with the first
thread should not change the behavior of the first thread.

• The opportunity should be provided for different implementations. For
example, by allowing but not requiring threads to share the whole address
space, by allowing but not requiring threads to be multiplexed on lightweight
processes, and by allowing but not requiring synchronization primitives to be
executed in user mode.

• Wherever possible, equivalent semantics to should be provided, even if that
doesn’t seem like the best way to implement the function. Alternative
operations should be added to do things the “right” way.

• The process is the unit of work. Threads are resources of the descriptors.
For example, threads in other processes are invisible.
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Multithreaded Operations

System Calls

The base programmer interface for functions other than those relating to threads
or multithreading is the System V Interface Definition, Third Edition (SVID3). In
general, most current UNIX system calls remain unchanged. The main difference
is that system calls that block do so to the lightweight process and therefore to
the thread that executes them. However programmers must understand that
threads and LWPs share almost all the programmer visible process resources
such as address space and file descriptor table. This can lead to several potential
trouble spots:

• Because file descriptors are shared, if one thread closes a file, it is closed for all
threads. Care must be taken with seeks before reads or writes, because
another thread could change the seek position before the read or write (this is
similar to what happens now when a parent and child process share a file
descriptor).

• There is only one working directory for each process. If one thread changes
the working directory, it is changed for all of them.

• There is only one set of user and group IDs for each process, so if one thread
changes one of these, it is changed for all of them. Because these can change
concurrently, the kernel must ensure that the values are sampled, atomically,
only once per system call.

• Multiple threads may manipulate the shared address space at the same time
via mmap() , brk() , or sbrk() .

• Programs must not make assumptions about “the” stack, because there may
be several.

Threads and Lightweight Processes

One lightweight process is created by the kernel when a program is started, and
it starts executing the thread compiled as the main program. Additional threads
are created by calls to the library specifying a procedure for the new thread to
execute and a stack area for it to use.

Depending on the implementation, on the library, or on programmer supplied
parameters, a thread may be associated with the same or different lightweight
processes during its lifetime. There may be a one-to-one relationship between
threads and lightweight processes, or one or more lightweight processes may be
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multiplexed by the thread library among a set of threads. Ordinarily, a thread
cannot tell what the relationship between lightweight processes and threads is,
although for performance reasons, or to avoid some deadlocks, a program may
require there to be more or fewer lightweight processes.

When a thread executes a kernel call, it remains bound to the same lightweight
process for the duration of the kernel call. If the kernel call blocks, that thread
and its lightweight process remain blocked. Other lightweight processes may
execute other threads in that program, including performing other kernel calls.
The same principle applies to page faults.

There is no system-wide name space for threads or lightweight processes. Thus,
for example, it is not possible to direct a signal to a particular lightweight process
from outside a process or to know which lightweight process sent a particular
message.

Thread State

The following state is unique to each thread:

• Thread ID
• Register state (including PC and stack pointer)
• Stack
• Signal mask
• Priority
• Thread-local storage

All other process state is shared by the threads within the process.

Thread-local Storage

Threads have some private storage (in addition to the stack) called thread-local
storage. Most variables in the program are shared among all the threads
executing it, but each thread has its own copy of thread-local variables.
Conceptually, thread-local storage is unshared, statically allocated data. The C
library variable errno  is a good example of a variable that should be placed in
thread-local storage. This allows each thread to reference errno  directly and it
allows threads to interleave execution without fear of corrupting errno  in other
threads. Thread-local storage is potentially expensive to access, so it should be
limited to the essentials, such as supporting older, non-reentrant interfaces.
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It is implementation-dependent whether or not a thread is absolutely prevented
from accessing another thread’s stack or thread-local variables, but a correct
thread must never attempt to do so.

Thread-local storage is obtained via a new #pragma , supported by the compiler
and linker. The contents of thread-local storage are zeroed, initially; static
initialization is not allowed. In C, thread-local storage for errno  would be
declared as follows:

#pragma unshared errno
extern int errno;

The size of thread-local storage is computed by the runtime linker at program
start time by summing the thread-local storage requirements of the linked
libraries. This prevents the exact size of thread-local storage from being part of
the library interface. Once the size is computed it is not changed (e.g., by future
dynamic linking in the process). This restriction prevents the size of thread-local
storage from changing once a thread is started. Thus thread-local storage
requirements are known at thread startup time and can be allocated as part of
stack storage. More dynamic mechanisms (such as POSIX thread-specific data
[POSIX 1990]) can be built using thread-local storage.

Thread Synchronization

Threads synchronize with each other using facilities supplied by the
implementation that present a standard set of semantics. The following
synchronization types are supported:

• Mutual exclusion (mutex) locks
• Counting semaphores
• Condition variables
• Multiple readers, single writer locks

The architecture allows a range of implementations of each synchronization type
to be supported. For example, mutual exclusion locks may be implemented as
spin locks, sleep locks, or adaptive locks, etc.

These facilities use synchronization variables in memory. The variables may be
statically allocated and/or at fixed addresses (within the alignment constraints of
the variable). The programmer may choose the particular implementation
variant of the synchronization semantic at the time the variable is initialized.
If the variable is initialized to zero, a default implementation is used.



SunOS 5.0 Multithread Architecture 13SunOS 5.0 Multithread Architecture 13

Synchronization variables may also be placed in memory that is shared between
processes. The programmer can select an implementation variant of each
synchronization type that allows the variable to synchronize threads in the
processes sharing the variable. Synchronization primitives apply to the shared
variable as part of the underlying mapped object. In other words,
synchronization variables may be shared between processes even though they
are mapped at different virtual addresses.

Synchronization variables that are not in shared memory are completely
unknown to the kernel. Synchronization variables that are in shared memory or
in files are also unknown to the kernel unless a thread is blocked on them. In the
latter case the thread is temporarily bound to the LWP that is blocked by the
kernel, as in a system call.

Signal handling

Each thread has its own signal mask. This permits a thread to block some signals
while it uses state that is also modified by a signal handler. All threads in the
same address space share the set of signal handlers, which are set up by
signal()  and its variants, as usual. If desired, it would be possible for a
particular application to implement per-thread signal handlers using the per-
process signal handlers. For example, the signal handler can use the ID of the
thread handling the signal as an index into a table of per-thread handlers. If the
threads library were to implement per-thread signal handlers it must decide on
the correct semantics when several threads have different combinations of signal
handlers, SIG_IGN , and SIG_DFL. In addition, all threads would be burdened
with the handler state. For this reason, it was felt that library support of per-
thread signal handlers was overly complex and possibly confusing to the
application programmer.

If a signal handler is marked SIG_DFL or SIG_IGN , the action on receipt of the
signal (exit, core dump, stop, continue, or ignore) affects all the threads in the
receiving process.

Signals are divided into two categories: traps and interrupts. Traps (e.g.,
SIGILL , SIGFPE, SIGSEGV) are signals that are caused synchronously by the
operation of a thread, and are handled only by the thread that caused them.
Several threads in the same address space could conceivably generate and
handle the same kind of trap simultaneously. Interrupts (e.g., SIGINT , SIGIO )
are signals that are caused asynchronously by something outside the process. An
interrupt may be handled by any thread that has it enabled in its signal mask.
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If more than one thread is enabled to receive the interrupt, only one is chosen.
Thus, several threads can be in the process of handling the same kind of signal
simultaneously. If all threads mask a signal, it will pend on the process until a
thread unmasks that signal. As in single-threaded processes, the number of
signals received by the process is less than or equal to the number sent.

For example, an application can enable several threads to handle a particular
I/O interrupt. As each new interrupt comes in, another thread is chosen to
handle the signal until all the enabled threads are active. New signals will then
pend waiting for threads to complete processing and re-enable signal handling.

Threads may send signals to other threads within the process via a new interface;
thread_kill() . In this case the signal behaves like a trap and can be handled
only by the specified thread. The programmer may also send a signal to all the
threads via sigsend() . A thread cannot send a signal to a specific thread in
another process because threads in other processes are invisible.

Threads that are not bound to LWPs may not use alternate signal stacks. Adding
alternate signal stacks to the unbound thread state was deemed too expensive to
implement because this would require a system call to establish the alternate
stack for each context switch of a thread requiring it. Threads bound to LWPs
may use alternate stacks as this state is associated with each LWP.

Non-local Goto

setjmp()  and longjmp()  work only within a particular thread. In particular,
it is an error for a thread to longjmp()  into another thread. Therefore, it is
possible to longjmp()  from a signal handler only when the setjmp()  was
executed by the thread that is handling the signal.

Thread Interfaces

Most of the interfaces available to threads are those that are available to UNIX
processes in single-threaded UNIX. As mentioned above, some of those
interfaces have different implications in a multithreaded environment, but the
intent is to provide “UNIX semantics” as the ordinary programming model. This
section describes some of the additional interfaces needed to create and manage
threads.

The syntax of the interfaces is shown in Figure 4.
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Figure 4 Thread Interface Functions

thread_id_t
thread_create (char *stack_addr,

unsigned int stack_size,
void (*func) (),
void *arg,
int flags);

int
thread_setconcurrency(int n);

void
thread_exit();

thread_id_t
thread_wait(thread_id_t thread_id);

thread_id_t
thread_get_id();

int
thread_sigsetmask(int how,

sigset_t *set,
sigset_t *oset);

int
thread_kill(thread_id_t thread_id,

int sig);

int
thread_stop(thread_id_t thread_id);

int
thread_continue(thread_id_t thread_id);

int
thread_priority(thread_id_t thread_id,

int priority);

void
mutex_init(mutex_t *mp,

int type,
void *arg);

void
mutex_enter(mutex_t *mp);

void
mutex_exit(mutex_t *mp);

int
mutex_tryenter(mutex_t *mp);

void
cv_invit(condvar_t *cvp,

int type,
void *arg);

void
cv_wait(condvar_t *cvp,

mutex_t *mutexp);

void
cv_signal(condvar_t *cvp);

void
cv_brodcast(condvar_t *cvp);

void
sema_init(sema_t *sp,

unsigned int count,
int type,
void *arg);

void
sema_p(sema_t *sp);

void
sema_v(sema_t *sp);

int
sema_tryp(sema_t *sp);

void
rw_init(rwlock_t *rwlp,

int type,
void *arg);

void
rw_enter(rwlock_t *rwlp,

rw_type_t type);

void
rw_exit(rwlock_t *rwlp);

int
rw_tryenter(rwlock_t *rwlp,

rw_type_t type);

void
rw_downgrade(rwlock_t *rwlp);

int
rw_tryupgrade(rwlock_t *rwlp);
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Thread creation
thread_create()  creates a new thread. If stack_addr  is not NULL,
stack_size  bytes of memory starting at stack_addr  are used for the thread
stack. In this case any thread-local storage is also placed on the stack so as not to
interfere with stack growth. This allows a language runtime library to control
thread storage without interference with its memory allocator. It is machine
dependent whether the initial stack pointer is at higher or lower addresses in the
specified stack. If stack_addr  is NULL the stack is allocated from the heap. If
stack_size  is not zero the stack will be of the specified size. Otherwise a
default stack size is used. Zeroed thread-local storage is also allocated to the
thread. thread_create()  returns the ID of the new thread. The thread IDs
have meaning only within a process. The initial thread priority and signal mask
is set to the same values as its creator. When the new thread is started, it begins
execution by a procedure call to func(arg) . If func  returns, the thread exits
(calls thread_exit() ). The flags  argument provides the following (or-able)
options:

THREAD_STOP

The thread is to be immediately suspended after it is created. The thread will
not run until another thread executes thread_continue()  to start it. If
THREAD_STOP is not specified, the thread is immediately runnable.

THREAD_NEW_LWP

A new LWP is created along with the thread. The new LWP is added to the
pool of LWPs used to execute threads.

THREAD_BIND_LWP

A new LWP is created and the new thread is permanently bound to it.

THREAD_WAIT

Specifies that another thread will eventually wait for this thread to exit. This
also means that the thread ID of a thread created with THREAD_WAIT will not
be reused until the waiting thread returns. If the thread is not created with
THREAD_WAIT, the thread ID may be reused at any time after the thread exits.

Thread concurrency control
thread_setconcurrency()  sets the degree of real concurrency (i.e., the
number of LWPs) that unbound threads in the application require to n. The
number of LWPs permanently bound to threads is not included in n. If n is zero
(the default), the library automatically creates as many LWPs for use in
scheduling unbound threads as required to avoid deadlock. This number can be
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incremented by creating a thread with the THREAD_NEW_LWP flag. If n is less
than the current maximum, LWPs are removed from the pool.
thread_setconcurrency()  guarantees only that this degree of concurrency
is available to application threads. The actual number of LWPs employed by the
library at any one time may vary.

The number of LWPs automatically created by the library (n = 0) is sufficient to
avoid deadlock, but it may not be enough to avoid poor performance; the library
may create too few or too many LWPs. The programmer may tune the number of
LWPs by creating threads with the THREAD_NEW_LWP flag or using
thread_setconcurrency()  as required by the application.

Thread termination
thread_exit()  terminates the current thread and deallocates thread resources
allocated by the threads package.

Waiting for threads
thread_wait()  blocks until the specified thread exits. It is an error to wait for
a thread that was created without the THREAD_WAIT attribute, to wait for the
current thread, or to have multiple thread_wait() s on the same thread. If
thread_id  is NULL, then any thread marked THREAD_WAIT that exits causes
thread_wait()  to return. If a stack was supplied by the programmer when the
thread was created, it may be reclaimed when thread_wait()  returns
successfully. thread_wait()  returns the ID of the thread that exited if the wait
is successful. After thread_wait()  returns successfully, the returned
thread_id  is unusable in any subsequent thread operation.

An alternate interface for this function is waitid()  with id_type  equal to one
of the following:

P_THREAD

waitid()  waits for the thread specified by id .

P_THREAD_ALL

waitid()  waits for any thread marked THREAD_WAIT.

The exit status of a thread is always zero.
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Thread identification
thread_get_id()  returns the thread ID of the caller.

Thread signal mask
thread_sigsetmask()  or sigprocmask()  sets the thread’s signal mask.

Thread signaling
thread_kill()  causes the specified signal to be sent to the specified thread.
An alternate interface for this function is sigsend()  with id_type  equal to
one of the following:

P_THREAD

sig  is sent to the thread within the process specified by id .

P_THREAD_ALL

sig  is sent to all the threads within the process.

Thread execution control
thread_stop()  prevents the specified thread from running. If thread_id  is
NULL then the current thread is immediately stopped. thread_continue()
initially starts a thread or restarts a thread after thread_stop() . The effect of
thread_continue()  may be delayed, but thread_stop()  does not return
until the specified thread is stopped.

Thread priority control
thread_priority()  sets the priority of the specified thread. If thread_id  is
NULL the current thread is used. The priority must be greater than or equal to
zero. Increasing the specified priority gives increasing scheduling priority. The
old priority is returned. If the specified thread is not running, then it may or may
not execute immediately even though its new priority is greater than a currently
executing thread.

Thread synchronization
The thread synchronization facilities are designed to synchronize threads both
within a process and between processes. When a synchronization variable is
initialized, the programmer must specify whether the synchronization variable is
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to be shared between processes. The programmer can usually also specify other
variants such as extra debugging, spin waiting, etc. The programmer may
bitwise-or THREAD_SYNC_SHARED into the variant type to specify that the
variable is to be shared between processes.

Any synchronization variable that is statically or dynamically allocated as zero
may be used immediately without further initialization, and provides the default
implementation variant in the default initial state. A dynamic initialization with
an implementation variant type of zero also specifies the default implementation
variant.

Mutex locks
Mutex locks provide simple mutual exclusion. They are low overhead in both
space and time and are therefore suitable for high frequency usage. Mutex locks
are strictly bracketing in that it is an error for a thread to release a lock not held
by the thread. Mutex locks are used to prevent data inconsistencies in critical
sections of code. They may also be used to preserve code that is single threaded.

mutex_enter()  acquires the lock, potentially blocking if it is already held.
mutex_exit()  releases the lock, potentially unblocking a waiter.
mutex_tryenter()  acquires the lock if it is not already held.
mutex_tryenter()  can be used to avoid deadlock in operations that would
normally violate the lock hierarchy.

Condition variables
Condition variables are used to wait until a particular condition is true.
Condition variables must be used in conjunction with a mutex lock. This
implements a typical monitor.

cv_wait()  blocks until the condition is signaled. It releases the associated
mutex before blocking, and reacquires it before returning. Since the reacquiring
of the mutex may be blocked by other threads waiting for the mutex, the
condition that caused the wait must be re-tested. Thus, typical usage is:

mutex_enter(&m);

...
while (some_condition) {

cv_wait(&cv, &m);
}
...
mutex_exit(&m);
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This allows the condition to be a complicated expression, as it is protected by the
mutex. There is no guaranteed order of acquisition if more than one thread
blocks on the condition variable.

cv_signal()  wakes up one of the threads blocked in cv_wait() .
cv_broadcast()  wakes up all of the threads blocked in cv_wait() . Since
cv_broadcast()  causes all threads blocking on the condition to recontend for
the mutex, it should be used with care. For example, it is appropriate to use
cv_broadcast()  to allow threads to contend for variable amounts of resources
when resources are released.

Semaphores
The semaphore synchronization facilities provide classic counting semaphores.
They are not as efficient as mutex locks, but they need not be bracketed so that
they may be used for asynchronous event notification (e.g., in signal handlers).
They also contain state so they may be used asynchronously without acquiring a
mutex as required by condition variables.

sema_p()  decrements the semaphore, potentially blocking the thread.
sema_v()  increments the semaphore, potentially unblocking a waiting thread.
sema_tryp()  decrements the semaphore if blocking is not required.

Multiple readers, single writer locks
Multiple readers, single writer locks allow many threads simultaneous read-only
access to an object protected by this lock simultaneously. It allows only one
thread to access an object for writing at any one time, and excludes any readers.
A good candidate for a multiple readers, single writer lock is an object that is
searched more frequently than it is changed. For brevity, this type of lock is also
known as a readers/writer lock.

rw_enter()  attempts to acquire a reader or writer lock. type  may be one of the
following:

RW_READER

Acquire a readers lock.

RW_WRITER

Acquire a writer lock.
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rw_exit()  releases a readers or writer lock. rw_tryenter()  acquires a
readers or writer lock if doing so would not require blocking. rw_downgrade()
atomically converts a writer lock into a reader lock. Any waiting writers remain
waiting. If there are no waiting writers it wakes up any pending readers.
rw_tryupgrade()  attempts to atomically convert a reader lock into a writer
lock. If there is another rw_tryupgrade()  in progress or there are any writers
waiting, it returns a failure indication.

Lightweight Process State

A lightweight process consists of a data structure in the kernel used for processor
scheduling, page fault handling, and kernel call execution. It also contains state
that is private to the LWP and an association with a process (address space). The
following programmer-visible state is maintained by the kernel and is unique to
each LWP within a process:

• LWP ID
• Register state (including PC and stack pointer)
• Signal mask
• Alternate signal stack and masks for alternate stack disable and onstack
• User and user+system virtual time alarms
• User time and system CPU usage
• Profiling state
• Scheduling class and priority

All other process state is shared by the LWPs within the process.

Note that even though the CPU usage, virtual time alarms, and alternate signal
stack are available to each LWP, this state is not kept for each thread that is
multiplexed on LWPs. Threads that require this state must be bound to an LWP.
Whether the LWP state includes a separate stack area known to the kernel or not
is implementation dependent. Of course, the lightweight process runs with a
stack.

Signals

A new signal, SIGWAITING, is sent to the process when all its LWPs are waiting
for some indefinite, external event (e.g., in poll() ). The default handling for
SIGWAITING is to ignore it. The threads package can use the receipt of
SIGWAITING to cause extra LWPs to be created as required to avoid deadlock.
This is similar in functionality to the architecture described in [Anderson 1990].
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While SIGWAITING is sent for “indefinite” waits, supposedly short term
blocking for things like page faults or file system I/O may take a long time
relative to the speed of the CPUs. It may be desirable to define an alternate signal
that is sent in these cases.

Time, Interval Timers, and Profiling

There is only one real-time interval timer per process, so it delivers one signal to
an address space when it reaches the specified time interval. Library routines
may implement multiple per-thread timers using the per-address space timer
when that functionality is required. Each LWP has two private interval timers;
one decrements in LWP user time and the other decrements in both LWP user
time and when the system is running on behalf of the LWP. When these interval
timers expire either SIGVTALRM or SIGPROF, as appropriate, is sent to the LWP
that owns the interval timer.

Profiling is enabled for each LWP individually. Each LWP can set up a separate
profiling buffer, but it may also share one if accumulated information is desired.
Profiling information is updated at each clock tick in LWP user time. The state of
profiling is inherited from the creating LWP.

Resource Usage

The resource limits set limits on the resource usage of the entire process (i.e. the
sum of the resource usage of all the LWPs in the process). When a soft resource
limit has been exceeded, the LWP that exceeded the limit is sent the appropriate
signal. The sum of the resource usage (including CPU usage) for all LWPs in the
process is available via getrusage() .

Process Creation and Destruction

The fork()  system call attempts to duplicate the existing UNIX semantics. It
duplicates the address space and creates the same LWPs in the same states as in
the original. This duplicates the threads in the original process. Calling fork()
may cause interruptible system calls to return EINTR when the calls are made by
any LWP (thread) other than the one calling fork() .

A new system call, fork1() , causes the current thread/LWP to fork, but the
other threads and LWPs that existed in the original process are not duplicated in
the new process. fork1()  is defined as follows:
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int fork1();

The return values are similar to fork() .

Both the exit()  and exec()  system calls work as usual, except that they
destroy all the LWPs in the address space. Both calls block until all the LWPs
(and therefore all active threads) are destroyed. When exec()  rebuilds the
process, it creates a single LWP. The process startup code then builds the initial
thread.

Why have both fork()  and fork1() ?
fork()  seems to have two generic uses: to duplicate the entire process (the BSD
dump program uses this technique), or to create a new process in order to set up
for exec() . For the latter purpose, fork1()  is much more efficient because
there is no need to duplicate all the LWPs. There are, however, dangers to using
fork1() . First, since threads are maintained by the threads library as data
structures, the threads library must take care that after fork1()  only the issuing
thread remains in the new address space, which is a duplicate of the old one.
Secondly, the programmer must be careful to call only functions that do not
require locks held by threads that no longer exist in the new process. This can be
difficult to determine as libraries can create hidden threads. Lastly, locks that are
allocated in memory that is sharable (i.e., mmap() ’ed with the MAP_SHARED
flag) can be held by a thread in both processes, unless care is taken to avoid this.
The latter problem can also arise with fork() .

Having fork()  completely duplicate the process is the semantic that is most
similar to the single-threaded fork() . It allows both generic uses and there are
fewer pitfalls for the programmer. Having fork1() , which forks only one
thread, permits optimized fork()  and immediate exec()  (e.g. system() ).

Scheduling

LWPs (and bound threads) can change their scheduling class and class priority
via the priocntl()  system call. A new scheduling class for “gang” scheduling
is available for implementations of fine grain parallelism. The LWP may also ask
to be bound to a CPU, depending on the scheduling class.
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Debugging

The /proc file system has been extended to reflect the changes to the process
model required by the addition of multithreading at the process level. Of
necessity, a kernel process model interface can provide access only to kernel-
supported threads of control, namely LWPs. Debugger control of library threads
is accomplished by cooperation between the debugger and the threads library,
with the aid of the /proc  file system to control the kernel-supported LWPs.

The details of the /proc  file system and some of the enhancements for multi-
threading support can be found in [Faulkner 1991].

Performance
All the performance numbers in this section were obtained on a SPARCstation™ 1+
(Sun 4/65), which is a 25Mhz SPARC® platform. The measurements were made
using the built-in microsecond resolution real-time timer. The numbers reflect an
untuned prototype system.

Thread Creation Time

The first measurement is for thread creation time. It measures the time consumed
to create a thread using a default stack that is cached by the threads package. The
measured time only includes the actual creation time, it does not include the
time for the initial context switch to the thread. The results are shown in Figure
5. The ratio column gives the ratio of the creation time in that row to the creation
time in the previous row.

Figure 5 Thread Creation Time
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Measurements were taken for creating both bound and unbound threads. Bound
thread creation involves calling the kernel to also create an LWP to run it.
Unbound thread creation is done without kernel involvement.

Thread Synchronization Time

The second measurement is for thread synchronization time. It measures the
time it takes for two threads to synchronize with each other using two
synchronization variables, as shown below:

sema_t s1, s2;

thread1()

{

...

start_timer();

sema_v(&s1);

sema_p(&s2);

t = end_timer();

...

}

thread2()

{

...

sema_p(&s2);

sema_v(&s1);

...

}

The numbers presented in Figure 6 are the results of the above measurement
divided by two, since there are actually two synchronizations involved. The ratio
column gives the ratio of the synchronization time in that row to the
synchronization time in the previous row.
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Figure 6 Thread Synchronization Time

The first measurement is a simple routine that does a setjmp()  and
longjmp()  to itself. It is presented as a baseline for thread switching time.
The next two measurements are for unbound and bound threads synchronizing
within a process. The last measurement is for threads in two different processes
synchronizing through a file in shared memory.

Comparison With Other Thread Models
This section addresses the similarities and differences between the SunOS multi-
thread (MT) architecture and other commercially available multithread
interfaces. Instead of comparing procedural interfaces, the discussions
concentrate on comparing and contrasting architectural issues. The comparisons
underscore what we believe are the key differences rather than being
comprehensive.

Mach Release 2.5 C Threads

Mach Release 2.5 C Threads [Cooper 1990], [Trevanian 1987] exemplifies a thread
interface that provides the programmer with the means to express concurrency,
independent of the underlying system support. While this is a desirable trait,
Mach 2.5 C Threads does not acknowledge the existence of a second layer of
abstraction (i.e., LWPs) and therefore does not allow the programmer to control
the degree of kernel resources it uses. In many useful applications the
programmer must know and manipulate the degree of actual kernel resources
required. For example, a window system programmer must know that extremely
lightweight threads are available, since a window system may use thousands.
A microtasking Fortran runtime library relies on kernel-supported threads that
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are scheduled on processors as a group. Database programmers may require a
mixture of the two situations. In addition, there may be aspects to kernel-
supported threads that are too “heavyweight” to export to lightweight threads
(e.g., virtual time) and are required by some applications.

In Mach 2.5, C Threads libraries have been constructed that map threads directly
to kernel-supported threads or multiplex threads on kernel-supported threads,
but one application cannot have both types at the same time. In addition, there
can be no direct access to “heavyweight” features of kernel-supported threads
since that would allow only a one-to-one mapping between threads and kernel-
supported threads.

Newer versions of Mach [Golub 1990] have corrected some of these deficiencies
by extending the C Threads interface to provide a two-level model similar to
ours. In the new library, C Threads are multiplexed on Mach kernel threads. In
addition, new C Threads interfaces allow C Threads to bind to Mach kernel
threads.

The main difference between the C Threads synchronization primitives and the
SunOS MT architecture primitives is the scope of operation. C Threads does not
explicitly support the use synchronization variables allocated in mmap’ed
memory even though Mach virtual memory supports the sharing of memory
between tasks. The SunOS MT architecture supports this and also allows the
placement of synchronization variables in files to control access to the file data,
and having the lifetime of such synchronization variables be greater than that of
the creating process.

C Threads supports per-process signal state. There is no per-thread signal mask.
There is no way for a thread to control when it can handle a signal except by
preventing all the threads in a process from handling it. When a particular
thread is in a critical section of code with respect to the signal handler, it must
block the interrupt for all threads. This can cause severe performance problems
in heavily asynchronous applications. The alternate solution for C Threads is
Mach IPC. Mach IPC, however, does not allow asynchronous interruption of a
computation. For example, an application that creates a thread to perform some
long computation may wish to terminate the computation regardless of results.
There is no way to interrupt the computation unless it is coded to occasionally
poll for IPC. This forces the programmer to change the computation code so that
polling is done frequently enough to respond to a termination request but not so
frequently as to slow down the computation.
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Chorus

Chorus [Armand 1990] intentionally avoided user-level threads because of a
perceived impact on real-time requirements. For example, the two levels of
scheduling interfere with the requirement that the highest priority runnable
thread is always allowed to run. SunOS meets this requirement by allowing a
thread to bind to an LWP and thus achieve a system-wide scheduling priority. In
addition, the bound thread can ask that the underlying LWP be made a member
of a real-time scheduling class, which provides more exact scheduling control.

Chorus threads each have a signal mask and a vector of signal handlers. The
effect of receipt of an asynchronously generated signal and combinations of
catching, SIG_DFL, and SIG_IGN  are computed. If one or more threads are
catching the signal, it is delivered to all catching threads (broadcast delivery).
Otherwise, if any thread has set the handler to SIG_IGN , the signal is discarded.
Otherwise the default action is taken on the process. The main deficiency in this
model is that broadcast delivery can cause “synchronization storms” when the
handling threads try to synchronize. It also causes much extra work for the
kernel. Lastly, broadcast makes the number of signals delivered to a process
uncountable in a non-queuing signal implementation. For example, if several
threads are waiting for a keyboard interrupt, and two are sent, some threads will
receive two signals while others will receive one.

The per-thread signal handlers add some code modularity, at the cost of
complexity in the handling of SIG_DFL and SIG_IGN  as noted above. The
modularity added is relatively minor because asynchronous signals are mostly
controlled by the application, not the library. In addition, serial handling of the
same signal within a thread is still a problem, just as it is in single-threaded
UNIX.

University of Washington

The variant of the Topaz [McJones 1989] operating system by the University of
Washington [Anderson 1990] implements a portable threads interface with
lightweight user-level threads that use kernel resources only as required. In most
cases threads can synchronize without kernel involvement, while at the same
time, I/O, page faults, and other blocking operations do not stop the entire
process. This approach has the same advantages as our threads multiplexed on
LWPs. However, programmer control over the use of kernel resources is not
supported.
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The main underlying difference between the University of Washington work and
the SunOS MT architecture is that the University of Washington work uses
lightweight “scheduler activations” that do upcalls into user space to give
schedulable execution contexts to the threads package. An upcall by a new
scheduler activation informs the threads package whenever a scheduler
activation currently in use by the process blocks in the kernel. This gives the
threads package the opportunity to schedule another runnable thread. This is
similar to the function of the new SIGWAITING signal in our architecture. This
signal also gives the threads library the opportunity to schedule a runnable
thread by first creating a new LWP. The main difference is that the current
definition of SIGWAITING is much more coarse than the way scheduler
activations are used. The former is sent only when the LWP blocks in an
indefinite wait. The latter is sent whenever the thread blocks in the kernel for
any event. In the future, we plan to experiment with sending signals on “faster”
events.

The University of Washington approach gives much finer-grained control over
scheduling threads on processors, though it is not clear that this is an absolute
requirement. In general, the SunOS MT architecture satisfies most of the
requirements that motivated the University of Washington group. The critical
observation made by both efforts was that the kernel need not be invoked for
every thread operation.

POSIX P1003.4a

Comparison with POSIX P1003.4a Pthreads [POSIX 1990] is somewhat difficult at
this time, as it is a moving target. Currently (pre Draft 10), it seems that the
signal model is a direct superset of the SunOS model. In addition, there seems to
be support for the two-level threads model in the scheduling interfaces.
However, the interaction between synchronization variables and mapped files
(P1003.4) is missing.

Sun LWP Library

The Sun LWP library [Kepecs 1985] supplied in SunOS 4.0 is a classic user-level-
only threads package. It contained no explicit kernel support. Threads (called
LWPs) synchronized with each other without kernel involvement. If an LWP
called a blocking system call or took a page fault, the entire application blocked.
This could be mitigated somewhat by using a non-blocking I/O library instead
of the standard UNIX I/O interfaces. The non-blocking I/O library uses kernel-
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supported asynchronous I/O facilities to mimic standard I/O interfaces and
allows the package to switch LWPs when one blocked on an indefinite I/O.
The application still blocked when a page fault was taken.

The SunOS multithread architecture completely supersedes this interface in
functionality.

Summary
The SunSoft SunOS multithreading architecture provides the following
advantages:

• The two-level (threads and LWP) model allows the programmer to decouple
logical program parallelism from the relatively expensive kernel-supported
parallelism. Programmers can rely on the availability of extremely lightweight
threads.

• The architecture allows the programmer to control the degree of real
concurrency the application requires or allows the threads package to
automatically decide this.

• The architecture has a uniform synchronization model between threads both
inside and outside a process.

• The programmer can control the mapping of threads onto LWPs to achieve
particular performance or functionality without leaving the threads model.

• The programmer can control the allocation of stacks and thread-local storage.
This allows coexistence with different memory allocation models (e.g.,
garbage collection).

• A minimalist translation of the environment to threads allows higher-level
interfaces such as POSIX Pthreads to be implemented on top of SunOS threads.
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