Section 5.1

Attributes

Information associated with a grammar symbol
Computed using semantic rules associated with grammar

rules

Example:

PRODUCTION SEMANTIC RULES

L — E\n print E.val

E—FEi+7T | E.val El.val + T.val
E—-T E.val T.val

T — 11 x F T.val Tl.val * F.val
T — F T.val F.val

F — (F) F.val E.val

F — num F.val num.val

Compiler Construction: Syntax Directed Translation — p. 1/16

Attributes

Synthesized attribute: attribute of a node (non-terminal) that
depends on the value of attributes of children nodes in the parse

free

Inherited attribute: attribute of a node (non-terminal) that
depends on the value of attributes of siblings and parent node in

the parse tree

Example:

PRODUCTION

SEMANTIC RULES

D —TL
T — int
T — float
L — Ly,id

L —id

L.in = T.type

T.type = INT

T.type = FLOAT

Ll.in = L.1in

addtype (L.1in, id.entry)
addtype (L.1in, id.entry)

Compiler Construction: Syntax Directed Translation — p. 2/16

Syntax-directed definitions

Definition: a CFG where each grammar production A — « is
associated with a set of semantic rules of the form
b = f£(cl, c2, ..., ck);
where:
b is a synthesized attribute of A or an inherited attribute of one
of the grammar symbols in «
cl, c2, ... are attributes of the symbols used in the
production

Translation scheme: CFG along with semantic rules inserted
at appropriate positions in the RHS of each grammar production

Compiler Construction: Syntax Directed Translat

ion—p. 3/16

Dependency graph

Directed graph showing the dependencies between attributes at
various nodes in the parse tree

Algorithm:
for each node n in the parse tree
for each attribute a of the grammar symbol at n
construct a node in the dependency graph for a
for each node n in the parse tree
for each semantic rule b=f (c1, ..., ck) associated with
the production used at n
construct an edge from each ¢; to b

Topological sort: order the nodes of the graph as
m1,ma,..., My, such that no edge goes from m;_ . to m; for any
i, k

Compiler Construction: Syntax Directed Translat

ion —p. 4/16

Evaluation of SDDs

General scheme:

1. Parse the input program and construct the parse tree.
2. Draw the dependency graph for the parse tree.

3. Do a topological sort for the dependency graph.

4. Traverse nodes in topologically sorted order, and evaluate
attributes at each node.

Compiler Construction: Syntax Directed Translation — p. 5/16

Section 5.3

S-attributed definitions

Definition: SDD with only synthesized attributes
Scheme:

1. Extend parser stack to have an extra field that stores the

value of attributes.
ALT. have a parsing stack and a parallel, value stack.

fop— | X | X.x
Y | Yy

2. When pushing a terminal symbol on parsing stack, push
corresponding attribute value on value stack

Compiler Construction: Syntax Directed Translat

ion —p. 6/16

S-attributed definitions

3. For the rule
A—>X1X2...X7~ A.CL:f(Xl..CCl,XQ.ZCQ,...,XT.ZCT)

modify the value stack as follows:

ntop = top - r + 1;

val[ntop] = f(valltop-r+1l], ..., valltop]);
top = ntop;

Example:
PRODUCTION SEMANTIC RULES
L — E\n print val[top]
EF— E{1+ T | val[ntop] = val[top-2] + val[top]
E—-T
T — T x F val [ntop] = val[top-2] * val[top]
T — F
F — (E) val [ntop] = val[top-1]
F' — num

Compiler Construction: Syntax Directed Translation — p. 7/16

Section 5.4

L-attributed definitions

Definition: A SDD istb L-attributed if each inherited attribute of
X; inthe RHS of A — X; ... X,, depends only on

1. attributes of Xy, Xo, ..., X;_1 (symbols to the left of X, in the
RHS);

2. Inherited attributes of A.

Restrictions for translation schemes:

1. Inherited attribute of X; must be computed by an action
before X;.

2. An action must not refer to synthesized attribute of any
symbol to the right of that action.

3. Synthesized attribute for A can only be computed after all
attributes it references have been completed (usually at end
of RHS).

Compiler Construction: Syntax Directed Translat

ion —p. 8/16

Section 5.6

Bottom-up translation

Removing embedded actions:
for each embedded action

replace action by a distinct marker non-terminal M

add production M — € to the grammar

attach the action to the end of this production
NOTE: Original grammar and modified grammar accept the same language;

actions are performed in the same order during parsing.

SEMANTIC RULES

Example:
PRODUCTION
S — aANC
S—aA {Ci=f(As)} C N
S—bAB {Ci=As} C = e
C—c {Cs=g(Ci)} e
M — e
C —c

(N.i = A.s, C.i = N.s)
N.s = f(A.s)
(M.i=A.s, C.i = M.s)
M.s = A.s

C.s = g(Cl.)

Compiler Construction: Syntax Directed Translation — p. 9/16

Bottom-up translation

Assumption: Each symbol X has one synthesized (X.s) and
one inherited (X.7) attribute.

1. Replace each A — X ... X,, by
where each M; is a new marker non-terminal

2. When reducing by M; — ¢ :
top — Xi_1 X;_1.S
top — 1 — M;_1 Xi_1.2

Compute X;.: and
push on stack;

top —21+4 — X1 X1.58 top < top + 1
top — 21+ 3 — M- X1.1
top — 21+ 2 — M 4 A

Compiler Construction: Syntax Directed Translation — p. 10/16

Bottom-up translation

3. Whenreducingby A — M1 X,... M, X, :
A.s = f(valltop-2n+2],...,valltop]);
val[top—-2n+l] = A.s;
top = top-2n+1l;

4. Simplifications:
If X; has no inherited attributes or is computed by a copy rule
X;.1 = X;_1.s discard M;; adjust indices of val array suitably.
If X{.7 exists and X;.2 = A.i, omit M.

(avoids parsing conflicts in left recursive grammars)

NOTES:
i) LL(1) grammar + markersis LL(1) =- no conflicts

ii) LR(1) grammar + markers may not be LR(1) =- conflicts may occur

Compiler Construction: Syntax Directed Translation — p. 11/16

Bottom-up translation

Example:
PRODUCTION SEMANTIC RULES STACK OPS
S — aANC (N.i=A.s, C.i = N.s)
N — € N.s = f(A.s) val [ntop] = f(valltop])
S —bABMC | (M.i= A.s, C.i = M.s)
M — € M.s = A.s val [ntop] = val[top-1]
C —c C.s = g(C.1) val [ntop] = g(val[top-11)

Compiler Construction: Syntax Directed Translation — p. 12/16

Miscellaneous

non-L-attributed definitions:

D — L:T D — idL
T — integer |char = T — integer |char
L — L,id|id L — JidL|:T

“Hard” L-attributed definitions:
PRODUCTION | SEMANTIC RULES
S— L L.count =0
L — 41 Li.count = L.count + 1

L — € print(L.count)

Compiler Construction: Syntax Directed Translation — p. 13/16

Section 5.5

Top-down translation

Left-recursion elimination:
Input: A — A1Y {Aa=g(Ai.a,Yy) }
A— X {Aa=f(X.x) }

Output: A— X {Ri=f(Xx)} R {Aa=R.s}
R—Y {Rii=gRiYy) } Ri {Rs=Ry.s}
R—e¢ {Rs=Ri}

Example:
E—-FE+T {Fwal=Fiwval+Twal} | E— T {Ri=Twal} R
E— FE —T {FE.wal = FEj.val—T.val} { F.val = R.s }
E—T { E.val = T.val } R— +T {Rii=Ri+Twal} Ry
T — (E) {T.wal = E.val } {Rs=Ri.s}
T — num { T.val = num.val } R— —-T {Rii=Ri—Twal} Ry
{Rs=Ri.s}
R— e {Rs=Ri}

Compiler Construction: Syntax Directed Translation — p. 14/16

Predictive translation

Input: translation scheme based on a grammar suitable for
predictive parsing
Output: Code for a syntax-directed translator
Method:
1. For each nonterminal A, construct a function with
Input parameters: one for each inherited attribute of A;

Return value: synthesized attributes of A;
Local variables: one for each attribute of each grammar

symbol that appears in a production for A.

2. Code for non-terminal A decides what production to use
based on the current input symbol (switch statement). Code
for each production forms one case of a switch statement.

Compiler Construction: Syntax Directed Translat

ion—p. 15/16

Predictive translation

3. In the code for a production, tokens, nonterminals, actions in
the RHS are considered left to right.

(i) For token X: save X.s in the variable created for X;
generate a call to match X and advance input.

(i) For nonterminal B: generate an assignment
c = B(bl, b2, ..., bk);
where:
bl, b2, ... arevariables corresponding to
iInherited attributes of B,
c is the variable for synthesized attribute of B,
B is the function created for B.

(i) For an action, copy the code into the function, replacing
each reference to an attribute by the variable created for
that attribute.

Compiler Construction: Syntax Directed Translation — p. 16/16

	Attributes
	Attributes
	Syntax-directed definitions
	Dependency graph
	Evaluation of SDDs
	S-attributed definitions
	S-attributed definitions
	L-attributed definitions
	Bottom-up translation
	Bottom-up translation
	Bottom-up translation
	Bottom-up translation
	Miscellaneous
	Top-down translation
	Predictive translation
	Predictive translation

