1_ General issues

= Target language:

= absolute machine language

- all addresses refer to actual addresses
- program placed in a fixed location in memory

= relocatable machine language (object modules)
- sub-programs can be compiled separately, libraries can
be used
- linking/loading necessary, but much greater flexibility

= assembly language
- code Is easy to generate/read
- additional pass required (assembiler)
= |nstruction selection: depends on
= uniformity of instruction set

= availability of special instructions, e.g.,
INC a VS MOV a RO ADD#1 RO MOV RO a

Section 9.1

1

Compiler Construction: Code Generation —p. 1/18

1_ General issues

= Register allocation

= register allocation: deciding which variables are stored in
registers

= register assignment: assigning specific registers to
variables

Example: Integer division on IBM Sys/370: DIV x vy

= x - even register of an even/odd register pair that holds 64
bit dividend

= v - divisor
= after division, x holds remainder, corresponding odd
register holds quotient
LOAD RO a
t = a / b = SRDA RO 32
DIV RO b

‘ ST R1 t

Compiler Construction: Code Generation —p. 2/18

I Target machine

= Byte-addressable, 4 bytes / word
® n general purpose registers

= Instruction format: OP SRC DEST
= Addressing modes:

S Mode Syntax Address
S absolute M M
S register R R
@ iIndexed c (R) c + contents(R)
register indirect *R contents(R)
Indexed indirect *c (R) contents(c + contents(R))
constant/literal #c constant c
Examples:
MOV 4 (RO) M MOV *4 (RO) M MOV #1 RO

1

Compiler Construction: Code Generation —p. 3/18

Section 9.4

Basic blocks

Definition: sequence of consecutive statements such that flow
of control enters at the beginning and leaves at the end without
halt or possibility of branch except at the end

Leader: first statement of a B.B.

Determining basic blocks:

1. Determine leaders:
(i) first statement is a leader
(i) targets of conditional/unconditional branch
(i) any statement immediately following a branch
2. For each leader, all statements following it upto (but not

including) next leader or end of program constitutes a basic
block.

Compiler Construction: Code Generation —p. 4/18

Flow graphs

Definition: directed graph with

1. a node corresponding to each basic block, with one node
distinguished as initial

2. an edge from B to B if

(1) there is a jump from last statement in B; to first statement
in By, Or

(i) By immediately follows By in program text, and B; does
not end in an unconditional jump

Compiler Construction: Code Generation —p. 5/18

Section 9.5

Next-use information

Def. A statement x = vy+z is said to define x and use or
reference vy and z

Live variable: A variable istb live at a given point if its value is
used after that point in the program

Algorithm:
1. Scan each B.B. backward from last statement to the first
2. Foreachstmt i:|x = y OP z| inthe backward pass

(i) attach to stmt ¢ the information currently found in the
Symbol Table for x, v, z

(i) in the ST, set x t0 NoT LIVE
(il) set y, z t0O NEXT USE = ¢

Applications: (i) storage for temporaries (ii) code generation

Compiler Construction: Code Generation —p. 6/18

Storage for temporaries

Principle: pack two temps into same location if they are not
simultaneously live

Assumption: temps are defined and used within basic blocks

Method:
for each temporary variable
assign it to first location that does not contain a temp.

(create new location if needed)
Example: x = a*a + 2*a*b + b*b

Compiler Construction: Code Generation —p. 7/18

[Intermediate language

Assignment statements
X =Y Op Z X = 0p Yy X =Y

Array references x = yli] x[1] =Yy
Pointer operations X = &y X = Xy X =y
Jumps

goto L 1f x relop y goto L

Procedure calls
param x1
param X2

param xn
call p, n

1

Compiler Construction: Code Generation —p. 8/18

Section 9.6

Assignment statements

Input: sequence of 3-addr statements constituting a basic block

Assumptions: for each operator used in 3-addr stmt, there is
an equivalent target language operator

Auxiliary information:

= Register descriptors (RD):
= shows which variables are stored in each register
= initially, all registers are empty

= Address descriptors (AD):

= for each name, shows the location(s) where the current
value of the name is stored (register/memory/stack etc.)

= can be stored in symbol table

Auxiliary function: getreg() - given a 3-addr statement,
determines a location L. where the result of the 3-addr statement
should be stored

Compiler Construction: Code Generation —p. 9/18

[Assignment statements

Stepl: x = v op =z
1. Let L = getreg().

2. Let 4/ = location(y) (preferably register). If ' # L, generate
MOV vy’ L

3. Let 2/ = location(z) (as above). Generate
ObP z’ L

4. Update address descriptor of x to {L}; remove x from all
RDs.

5. If L is a register, update its RD.

6. If y (or z) Is
() In a register
(i) has no next use and is not live on exit from the block
change RD to indicate that the register no longer contains y

I (or z).

Compiler Construction: Code Generation —p. 10/18

Assignment statements

Step | (special case): x = vy
1. If y is in reqister R;:
(i) change RDs and AD for x to indicate that x is now only in
R;;
(i) if y has no next use and is not live on exit from block,
delete v from RD for R;.
2. If y is in memory:

() load y into a register (obtained using getreg()), and
proceed as above; or

(i) generate |MOV y x
(preferable if x has no next use in the block).

Compiler Construction: Code Generation —p. 11/18

Assignment statements

Step lI: after processing all stmts in the basic block, generate
MOV instructions to store all variables that are live on exit, but not
currently in their memory locations.

for each variable x in each register
check AD for x to determine whether its current value is in
memory
If not, generate suitable MOV instruction

Compiler Construction: Code Generation — p. 12/18

Getreg

. If y isin a register R and

= R holds no other names

= v is not live / no next use after this statement
then

(i) delete R from AD for y; (ii) return R.

. If there is an empty register, return it.

. If x has a next use, or op is an operator (e.g. indexing) that
requires a regqister:

(i) find an occupied register R;

(i) if value(s) in R are not also in memory, generate
MOV R, M
(ii) update AD for M; (iv) return R.

. If x Is not used in the block, or no suitable occupied register
can be found in step 3, return memory location of x.

Compiler Construction: Code Generation —p. 13/18

Arrays

INSTR iin R; iin M; i on stack

a = b[1i] MOV b(Ri) R MOV Mi R MOV Si(A) R
MOV b(R) R MOV b(R) R

ali] = b MOV b a(Ri) MOV Mi R MOV Si(A) R

MOV b a(R) MOV b a(R)

A - register containing pointer to AR for i
Si - offset of i within AR
R - location returned by getreg()

Compiler Construction: Code Generation — p. 14/18

Pointers

INSTR pin R, p in M, p on stack

a = *p MOV *Rp a MOV Mp R MOV Sp(A) R
MOV *R R MOV *R R

*p = a MOV a *Rp MOV Mp R MOV a R
MOV a *R MOV R *Sp(A)

A - register containing pointer to AR for p
Sp - offset of p within AR
R - location returned by getreg()

Compiler Construction: Code Generation — p. 15/18

Conditional jumps

Assumptions:

1.

2.

3.

CCR (Condition Code Register) indicates whether the last
quantity computed or loaded into a register is less than,
greater than, or equal to O.

Compare instruction: CMP x vy
- sets CCto +veif x > v, etc.

Conditional jump instructions:
JLT L JLE L JEQ L JGE L

Translation: if x op y goto L

CMP x vy
J<op> L

Compiler Construction: Code Generation — p. 16/18

1_ Procedure calls

Scheme:
= Position of AR for current procedure is stored in SP
= SP points to beginning of AR on top of stack
= Use positive offsets from SP to access fields of AR
= Calling procedure increments SP and transfers control
= On return, caller decrements SP

Section 9.3

[Alt. SP points to top of stack]

Compiler Construction: Code Generation —p. 17/18

Section 9.3

Procedure calls

Scheme:
= Position of AR for current procedure is stored in SP
= SP points to beginning of AR on top of stack
= Use positive offsets from SP to access fields of AR
= Calling procedure increments SP and transfers control
= On return, caller decrements SP

[Alt. SP points to top of stack]
Initialization:

MOV #stackstart SP

/* code for main */

HALT

Compiler Construction: Code Generation —p. 17/18

Procedure calls

Caller

ADD #caller.recordsize SP

MOV RO 4 (SP) /* 1lst argument */
MOV R1 8 (SP) /* 2nd argument */
MOV #here+16 *SP /* return address */

GOTO <addr. of 1lst statement of callee>
SUB #caller.recordsize SP

Callee

/* save all registers */

/* do required work */

MOV RO 4 (SP) /* return value */

/* restore registers */

GOTO *0(SP) /* return statement */

Compiler Construction: Code Generation —p. 18/18

	General issues
	General issues
	Target machine
	Basic blocks
	Flow graphs
	Next-use information
	Storage for temporaries
	Intermediate language
	Assignment statements
	Assignment statements
	Assignment statements
	Assignment statements
	Getreg
	Arrays
	Pointers
	Conditional jumps
	Procedure calls
	Procedure calls

	Procedure calls

