
S
ec

tio
n

9.
1

General issues

Target language:
absolute machine language

all addresses refer to actual addresses
program placed in a fixed location in memory

relocatable machine language (object modules)
sub-programs can be compiled separately, libraries can
be used
linking/loading necessary, but much greater flexibility

assembly language
code is easy to generate/read
additional pass required (assembler)

Instruction selection: depends on
uniformity of instruction set
availability of special instructions, e.g.,
INC a vs MOV a R0 ADD#1 R0 MOV R0 a

Compiler Construction: Code Generation – p. 1/18

General issues

Register allocation
register allocation: deciding which variables are stored in
registers
register assignment: assigning specific registers to
variables

Example: Integer division on IBM Sys/370: DIV x y
x - even register of an even/odd register pair that holds 64
bit dividend
y - divisor
after division, x holds remainder, corresponding odd
register holds quotient

LOAD R0 a
t = a / b ⇒ SRDA R0 32

DIV R0 b
ST R1 t

Compiler Construction: Code Generation – p. 2/18

S
ec

tio
n

9.
2

Target machine

Byte-addressable, 4 bytes / word
n general purpose registers
Instruction format: OP SRC DEST

Addressing modes:

Mode Syntax Address
absolute M M
register R R
indexed c(R) c + contents(R)
register indirect *R contents(R)
indexed indirect *c(R) contents(c + contents(R))
constant/literal #c constant c

Examples:
MOV 4(R0) M MOV *4(R0) M MOV #1 R0

Compiler Construction: Code Generation – p. 3/18

S
ec

tio
n

9.
4

Basic blocks

Definition: sequence of consecutive statements such that flow
of control enters at the beginning and leaves at the end without
halt or possibility of branch except at the end
Leader: first statement of a B.B.

Determining basic blocks:
1. Determine leaders:

(i) first statement is a leader
(ii) targets of conditional/unconditional branch
(iii) any statement immediately following a branch

2. For each leader, all statements following it upto (but not
including) next leader or end of program constitutes a basic
block.

Compiler Construction: Code Generation – p. 4/18

Flow graphs

Definition: directed graph with
1. a node corresponding to each basic block, with one node

distinguished as initial
2. an edge from B1 to B2 if

(i) there is a jump from last statement in B1 to first statement
in B2, or

(ii) B2 immediately follows B1 in program text, and B1 does
not end in an unconditional jump

Compiler Construction: Code Generation – p. 5/18

S
ec

tio
n

9.
5

Next-use information

Def. A statement x = y+z is said to define x and use or
reference y and z

Live variable: A variable istb live at a given point if its value is
used after that point in the program

Algorithm:
1. Scan each B.B. backward from last statement to the first
2. For each stmt i: x = y OP z in the backward pass

(i) attach to stmt i the information currently found in the
Symbol Table for x, y, z

(ii) in the ST, set x to NOT LIVE

(iii) set y, z to NEXT USE = i

Applications: (i) storage for temporaries (ii) code generation

Compiler Construction: Code Generation – p. 6/18

Storage for temporaries

Principle: pack two temps into same location if they are not
simultaneously live

Assumption: temps are defined and used within basic blocks

Method:
for each temporary variable

assign it to first location that does not contain a temp.
(create new location if needed)

Example: x = a*a + 2*a*b + b*b

Compiler Construction: Code Generation – p. 7/18

Intermediate language

Assignment statements
x = y op z x = op y x = y

Array references x = y[i] x[i] = y

Pointer operations x = &y x = *y *x = y

Jumps
goto L if x relop y goto L

Procedure calls
param x1
param x2
...
param xn
call p, n

Compiler Construction: Code Generation – p. 8/18

S
ec

tio
n

9.
6

Assignment statements

Input: sequence of 3-addr statements constituting a basic block
Assumptions: for each operator used in 3-addr stmt, there is
an equivalent target language operator
Auxiliary information:

Register descriptors (RD):
shows which variables are stored in each register
initially, all registers are empty

Address descriptors (AD):
for each name, shows the location(s) where the current
value of the name is stored (register/memory/stack etc.)
can be stored in symbol table

Auxiliary function: getreg() - given a 3-addr statement,
determines a location L where the result of the 3-addr statement
should be stored

Compiler Construction: Code Generation – p. 9/18

Assignment statements

Step I: x = y op z

1. Let L = getreg().

2. Let y′ = location(y) (preferably register). If y′ 6= L, generate
MOV y’ L

3. Let z′ = location(z) (as above). Generate
OP z’ L

4. Update address descriptor of x to {L}; remove x from all
RDs.

5. If L is a register, update its RD.
6. If y (or z) is

(i) in a register
(ii) has no next use and is not live on exit from the block
change RD to indicate that the register no longer contains y
(or z).

Compiler Construction: Code Generation – p. 10/18

Assignment statements

Step I (special case): x = y

1. If y is in register Ri:
(i) change RDs and AD for x to indicate that x is now only in

Ri;
(ii) if y has no next use and is not live on exit from block,

delete y from RD for Ri.
2. If y is in memory:

(i) load y into a register (obtained using getreg()), and
proceed as above; OR

(ii) generate MOV y x

(preferable if x has no next use in the block).

Compiler Construction: Code Generation – p. 11/18

Assignment statements

Step II: after processing all stmts in the basic block, generate
MOV instructions to store all variables that are live on exit, but not
currently in their memory locations.

for each variable x in each register
check AD for x to determine whether its current value is in

memory
if not, generate suitable MOV instruction

Compiler Construction: Code Generation – p. 12/18

Getreg

1. If y is in a register R and
R holds no other names
y is not live / no next use after this statement

then
(i) delete R from AD for y; (ii) return R.

2. If there is an empty register, return it.
3. If x has a next use, or op is an operator (e.g. indexing) that

requires a register:
(i) find an occupied register R;
(ii) if value(s) in R are not also in memory, generate

MOV R, M

(iii) update AD for M; (iv) return R.
4. If x is not used in the block, or no suitable occupied register

can be found in step 3, return memory location of x.

Compiler Construction: Code Generation – p. 13/18

Arrays

INSTR i in Ri i in Mi i on stack
a = b[i] MOV b(Ri) R MOV Mi R MOV Si(A) R

MOV b(R) R MOV b(R) R
a[i] = b MOV b a(Ri) MOV Mi R MOV Si(A) R

MOV b a(R) MOV b a(R)

A - register containing pointer to AR for i
Si - offset of i within AR
R - location returned by getreg()

Compiler Construction: Code Generation – p. 14/18

Pointers

INSTR p in Rp p in Mp p on stack
a = *p MOV *Rp a MOV Mp R MOV Sp(A) R

MOV *R R MOV *R R
*p = a MOV a *Rp MOV Mp R MOV a R

MOV a *R MOV R *Sp(A)

A - register containing pointer to AR for p
Sp - offset of p within AR
R - location returned by getreg()

Compiler Construction: Code Generation – p. 15/18

Conditional jumps

Assumptions:
1. CCR (Condition Code Register) indicates whether the last

quantity computed or loaded into a register is less than,
greater than, or equal to 0.

2. Compare instruction: CMP x y
sets CC to +ve if x > y, etc.

3. Conditional jump instructions:
JLT L JLE L JEQ L JGE L ...

Translation: if x op y goto L

CMP x y
J<op> L

Compiler Construction: Code Generation – p. 16/18

S
ec

tio
n

9.
3

Procedure calls

Scheme:
Position of AR for current procedure is stored in SP
SP points to beginning of AR on top of stack
Use positive offsets from SP to access fields of AR
Calling procedure increments SP and transfers control
On return, caller decrements SP

[Alt. SP points to top of stack]

Initialization:
MOV #stackstart SP
/* code for main */
. . .
HALT

Compiler Construction: Code Generation – p. 17/18

S
ec

tio
n

9.
3

Procedure calls

Scheme:
Position of AR for current procedure is stored in SP
SP points to beginning of AR on top of stack
Use positive offsets from SP to access fields of AR
Calling procedure increments SP and transfers control
On return, caller decrements SP

[Alt. SP points to top of stack]

Initialization:
MOV #stackstart SP
/* code for main */
. . .
HALT

Compiler Construction: Code Generation – p. 17/18

Procedure calls

Caller
ADD #caller.recordsize SP
MOV R0 4(SP) /* 1st argument */
MOV R1 8(SP) /* 2nd argument */
MOV #here+16 *SP /* return address */
GOTO <addr. of 1st statement of callee>
SUB #caller.recordsize SP

Callee
/* save all registers */
/* do required work */
MOV R0 4(SP) /* return value */
/* restore registers */
GOTO *0(SP) /* return statement */

Compiler Construction: Code Generation – p. 18/18

	General issues
	General issues
	Target machine
	Basic blocks
	Flow graphs
	Next-use information
	Storage for temporaries
	Intermediate language
	Assignment statements
	Assignment statements
	Assignment statements
	Assignment statements
	Getreg
	Arrays
	Pointers
	Conditional jumps
	Procedure calls
	Procedure calls

	Procedure calls

