Outline

1 PCP

2 Decision problems about CFGs

PCP reduction

Given: $\langle M, w \rangle$ in encoded form

To construct: an instance (A,B) of MPCP such that M accepts w if and only if (A,B) has a solution.

Preliminaries:

- Assume w.l.o.g. that
 - M never prints a blank;
 - lacksquare M never moves left from the first tape square (i.e. never hangs).
- Starting configuration: $(q_0, \#w)$
- Representation of configuration: $\alpha \mathbf{q} \beta$ (If head is on a blank, i.e. at the end of the written portion of the tape, $\beta = \varepsilon$.)

PCP instance

	List A	List B	
Group I	F	$\vdash q_ow \vdash$	
Group II	$\begin{matrix} a \\ \vdash \end{matrix}$	$a \\ \vdash$	$\text{ for any } a \in \Sigma$
Group IIIA $ \text{ when } \delta(q,a) = (p,b) $	$\begin{array}{c} qa \\ qa \\ cqa \end{array}$	$pb \\ ap \\ pca$	$\begin{array}{l} \text{if } b \in \Sigma \\ \text{if } b = R \\ \text{if } b = L \end{array}$
Group IIIB $\text{ when } \delta(q,\#) = (p,b)$	$\begin{array}{c} q \vdash \\ q \vdash \\ cq \vdash \end{array}$	$\begin{array}{c} pb \vdash \\ \#'p \vdash \\ pc \vdash \end{array}$	$\begin{array}{l} \text{if } b \in \Sigma \\ \text{if } b = R \\ \text{if } b = L \end{array}$

PCP instance

	$List\ A$	List B
Group IV	ahb	h
	ah	h
	hb	h
Group V	$h \vdash \vdash$	F

PCP is undecidable

Lemma: M accepts w if and only if the MPCP instance (A,B) above has a solution.

Proof sketch: (\Rightarrow)

- Start with pair from group I.
- Use pairs from group III to simulate one move in the region around the head position; use pairs from group II to copy rest of the tape contents.
- If M halts, use pairs from group IV to progressively erase the "tape" in the B string.

```
A 	ext{ string: } \ldots \vdash a_1 \ldots \overbrace{a_i h a_{i+1}} \ldots \vdash B 	ext{ string: } \ldots \vdash a_1 \ldots a_i h a_{i+1} \ldots \vdash a_1 \ldots \overbrace{a_{i-1} h a_{i+2}} \ldots \vdash
```

Terminate with pair from group V.

PCP is undecidable

Proof sketch (contd.): (\Leftarrow)

Solution must begin with: $A \text{ string} = \vdash B \text{ string} = \vdash q_o w \vdash$.

Partial solutions have the form: A string = x B string = xy

where

- x= sequence of configurations separated by \vdash , last one $(w_C,$ say) may be incomplete
- $y={
 m computation}$ upto and including w_C followed by prefix of a configuration that follows w_C

Partial solution can be completed only if M halts; otherwise, B string is always longer.

Outline

1 PCF

2 Decision problems about CFGs

Ambiguity of CFGs

Given: $A = w_1, w_2, \dots, w_k, \quad B = x_1, x_2, \dots, x_k.$

Reduction:

Let $G_A:A\to w_1Aa_1\mid\ldots\mid w_kAa_k\mid w_1a_1\mid\ldots\mid w_ka_k$ and $G_B:B\to x_1Ba_1\mid\ldots\mid x_kBa_k\mid x_1a_1\mid\ldots\mid x_ka_k$ Let $G_{AB}:S\to A\mid B\ldots$

Then G_{AB} is ambiguous if and only if (A,B) has a solution.

Ambiguity of CFGs

Given:
$$A = w_1, w_2, \dots, w_k, \quad B = x_1, x_2, \dots, x_k.$$

Reduction:

Let $G_A:A\to w_1Aa_1\mid\ldots\mid w_kAa_k\mid w_1a_1\mid\ldots\mid w_ka_k$ and $G_B:B\to x_1Ba_1\mid\ldots\mid x_kBa_k\mid x_1a_1\mid\ldots\mid x_ka_k$ Let $G_{AB}:S\to A\mid B\ldots$

Then G_{AB} is ambiguous if and only if (A,B) has a solution.

List languages

 $L(G_A)$ and $L(G_B)$ are called *list languages*.

List languages

Lemma: If L_A is a list language, then $\overline{L_A}$ is a CFL.

Proof: Let P be a (D)PDA that works as follows.

- **1** On symbols in Σ , P pushes the input symbol on stack.
- 2 On symbols a_1, \ldots, a_k , it pops the stack to see if the top of the stack contains w_i^R .
- If input and stack are both empty, reject.
- In all other cases, accept.

Theorem: Let G_1 and G_2 be CFGs, and R a regular expression. Then the following are undecidable.

 $L(G_1) \cap L(G_2) = \emptyset$?

$$lacksquare L(G_1) \cap L(G_2) = \varnothing$$
 ? Let $L(G_1) = L_A$, $L(G_2) = L_B$.

- $lacksquare L(G_1) \cap L(G_2) = \varnothing$? Let $L(G_1) = L_A$, $L(G_2) = L_B$.
- $L(G_1) = L(G_2)$?

$$L(G_1) \cap L(G_2) = \emptyset$$
 ?

Let
$$L(G_1) = L_A$$
, $L(G_2) = L_B$.

$$L(G_1) = L(G_2)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_2) = (\Sigma \cup I)^*$.

$$L(G_1) \cap L(G_2) = \emptyset$$
 ?

Let
$$L(G_1) = L_A$$
, $L(G_2) = L_B$.

$$L(G_1) = L(G_2)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_2) = (\Sigma \cup I)^*$.

■
$$L(G_1) = L(R)$$
 ?

$$L(G_1) \cap L(G_2) = \emptyset$$
 ?

Let
$$L(G_1) = L_A$$
, $L(G_2) = L_B$.

$$L(G_1) = L(G_2)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_2) = (\Sigma \cup I)^*$.

■
$$L(G_1) = L(R)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $R = (\Sigma \cup I)^*$.

$$L(G_1) \cap L(G_2) = \emptyset$$
 ?

Let
$$L(G_1) = L_A$$
, $L(G_2) = L_B$.

$$L(G_1) = L(G_2)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_2) = (\Sigma \cup I)^*$.

■
$$L(G_1) = L(R)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $R = (\Sigma \cup I)^*$.

$$\blacksquare L(G_1) \subseteq L(G_2) ?$$

$$L(G_1) \cap L(G_2) = \emptyset$$
 ?

Let
$$L(G_1) = L_A$$
, $L(G_2) = L_B$.

$$L(G_1) = L(G_2)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_2) = (\Sigma \cup I)^*$.

■
$$L(G_1) = L(R)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $R = (\Sigma \cup I)^*$.

$$L(G_1) \subseteq L(G_2)$$
 ?

Let
$$L(G_2) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_1) = (\Sigma \cup I)^*$.

Theorem: Let G_1 and G_2 be CFGs, and R a regular expression. Then the following are undecidable.

$$L(G_1) \cap L(G_2) = \emptyset$$
 ?

$$L(G_1) = L(G_2)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_2) = (\Sigma \cup I)^*$.

■
$$L(G_1) = L(R)$$
 ?

Let
$$L(G_1) = \overline{L_A} \cup \overline{L_B}$$
, $R = (\Sigma \cup I)^*$.

Let $L(G_1) = L_A$, $L(G_2) = L_B$.

$$L(G_1) \subseteq L(G_2)$$
 ?

Let
$$L(G_2) = \overline{L_A} \cup \overline{L_B}$$
, $L(G_1) = (\Sigma \cup I)^*$.

$$L(R) \subseteq L(G_1)$$
 ?